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Building-management systems (BMSs) are becoming increasingly important as they are an efficient
means to having buildings that consume less energy as well as for improving the indoor working and
living environments. On the other hand, implementing automated control and monitoring systems in
buildings is still relatively new, and one of the obstacles for their wider implementation is the ease of
setting up the appropriate parameters for the controllers. During our work on an experimental controller
for an indoor environment that is installed in an occupied office in the building of the Faculty of Civil and
Geodetic Engineering, University of Ljubljana, Slovenia, it has become evident that a computer simulator
of the system would be a welcome aid for the optimization of its functioning. In this paper we present a
simulator application developed in a combined Matlab/Simulink and Dymola/Modelica environment.
The simulator mirrors the functioning of the control system and the dynamics of the indoor environ-
ment, where the thermal model of the simulator was developed in the Dymola/Modelica environment,
while the illuminance model was developed and parameterized as a black-box model on the basis of
measurements in the Matlab environment. The simulator can emulate the response of conventional ON/
OFF controllers as well as fuzzy controllers. The paper presents the design of the simulator with all of the
key elements described. The underlying models for the thermal and illuminance control are also sepa-
rately described. Finally, the performance of the simulator is presented for a selected day.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The use of automated control in buildings has been shown to
have a great deal of potential for reducing the energy consumption
of HVAC systems as well as for artificial illumination [1,2]. Building
automation can also greatly enhance the quality of the indoor
environment and in this way increase the performance and
enhance the comfort of the occupants. Recent developments in
building-management systems (BMSs) have been predominantly
driven by the advances in computers and telecommunications
technology. The possibilities of using wireless-communication
technologies as well as a reduction in prices have enabled their
wider application in the construction industry. Despite this it needs
to be stressed that the primary focus in the development was not
on new control concepts, but on the application of existing tech-
nologies [3], although advanced control methods have been used in
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numerous experimental systems. The use of fuzzy-logic in the field
of indoor-environment control was presented by Kolokotsa et al. [4]
and Kristl et al. [5] for the regulation of thermal and visual envi-
ronments as well as for the control of ventilation, while Guillemin
[6] supplemented fuzzy-logic controllers with genetic algorithms
for the optimization of the decision matrix. Neural networks are
also used. Argiriou et al. [7] employed them for the control of hy-
dronic solar heating, while Castilla et al. [8] used them for thermal-
comfort models of HVAC systems. �Siroky et al. [9], Castilla et al. [10]
andMa et al. [11] showed through their work that model predictive
control (MPC) was well suited for the control of an indoor envi-
ronment. An upgrade of the conventional MPC, the adaptive mul-
tiple model MPC, was implemented by Kim [12] for the
optimization of thermal storage in buildings. Another point that is
also very evident in the field of “smart buildings” is that in many
building applications the primary goal is just a reduction of the
energy being consumed. Other benefits that could be reached with
a holistic control system for the indoor environment [13] (e.g.,
enhanced daylighting [14], user comfort [15], indoor-air quality
[16]) are neglected or ignored [17]. Such an approach contradicts
the basic philosophy of bioclimatic design, where the higher effi-
ciency of buildings does not only mean the use of less energy for
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Fig. 1. Parts of the simulator.
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heating and cooling, but primarily better working and living con-
ditions for the occupants [18]. With an integrated treatment of the
buildings and installed systems, better results can be achieved
simultaneously in terms of occupant comfort as well as energy use.

The Integral Control system of Indoor Environment (ICsIE)
presented and described by Ko�sir et al. [17] is based on the above-
stated basic presumption of bioclimatic design. The system regu-
lates the indoor workplace illuminance, heating, cooling and nat-
ural ventilation, linked to the indoor CO2 concentration. The ICsIE is
installed in an occupied office of themain building of the Faculty for
Civil and Geodetic Engineering in Ljubljana, Slovenia. The indoor
environmental conditions are regulated via available actuators that
consist of external motorized venetian blinds, ceiling-suspended
radiant heating and cooling panels, conventional office fluores-
cent lights and an automated window. The control and monitoring
of the environmental conditions are achieved through an elaborate
array of internal and external sensors. These sensors record the
internal and external illuminance, the temperature, the relative
humidity, the internal CO2 concentration, the global and reflected
solar radiation, the precipitation detection, the wind speed, the
wind direction and the consumption of energy for heating and
cooling. Further information regarding the control logic and the
structure of the system is available in the above reference.

By using and experimenting with the ICsIE it has become
evident that if appropriately tuned, the system performs satisfac-
torily [14,17]. Nonetheless, because at its core the ICsIE utilizes a
black-box approach, the knowledge of the system operators has to
be substantial in order to achieve a satisfactory control perfor-
mance. Such an approach can also be tedious for the operators as
they have to set-up the control parameters and wait for the
experimental results. Even if the results are satisfactory, the oper-
ator cannot know if the system set-up that was used is the best
possible for the given task [3] as the experiment cannot be repeated
due to changes in the weather. What is missing is an underlying
physical model or a simulator of the control system. Although the
thermal (i.e., heating and cooling) control algorithm implemented
in the ICsIE is partly based on an earlier thermal model of a building
developed by �Skrjanc et al. [19] and Sodja et al. [20], the illumi-
nance control is completely based on experimentally acquired
knowledge [5,21]. In order to overcome the above-described
shortcomings associated with conducting real-life experiments
with the ICsIE to set-up its control parameters, a simulator appli-
cation has been developed. The simulator enables the testing of
different set-ups of the ICsIE on a standard PC equipped with the
Matlab and Simulink [22] applications. The simulations are con-
ducted on the basis of real weather data recorded by the ICsIE for
the duration of its operation since 2009. This paper presents the
methodology of the simulator, the underlying models for the
thermal and illuminance control as well as the user interface and
functioning of the application.

1.1. The purpose of the simulator

The simulator was developed in order to obtain a virtual envi-
ronment that would accurately imitate the real-world conditions
and enable the rapid and process-safe testing of the impact of all
the included parameters on the results of the simulation. Besides
that, the aim was also to achieve the relatively simple use of the
simulator, even for inexperienced users. For this purpose a user
interface was added, through which the parameters can be
adjusted and different actions can be performed with the user
controls. The presented simulator has several advantages over real-
system testing, for instance: the simulation runs are very fast in
comparison to the real-time experiments; the simulations can be
performed for any day of the year, independent of the actual day of
the year; the simulation runs can be performed for several days in a
row (up to ten) without having to wait for several days to get an
overall insight into the results (e.g., for control design or testing
purposes); a day with the desired weather conditions can be
selected; and the simulation can be repeated multiple times with
different control parameters. At this point, the simulator gives an
immediate insight into the impact of various parameters, such as
hysteresis, references, time constraints, fuzzy controllers’ settings,
etc., as well as the end results, which can be obtained relatively
quickly and afterwards tested on a real system. Since the real-
system testing, besides being slow, could also be disturbing to the
occupants of the room, the use of the simulator for such purposes
seems to be an optimal solution.
2. Simulator

The developed simulator is derived on the basis of an indoor
environment installed in an occupied office in the building of the
Faculty of Civil and Geodetic Engineering, University of Ljubljana,
Slovenia. The indoor environment is on the 4th of 5 floors and
consists of a room of approximately 40m2 areawith onewindow of
approximately 11 m2 area and one outside wall. It is equipped with
an automation system that consists of several control schemes, all
the necessary sensors and actuators, automated venetian blinds
with five possible positions, automated artificial illuminance
(lights), automated window and heating/cooling panels.
2.1. Parts of the simulator

The simulator consists of three major parts, i.e., the controller,
the model and the user interface, which are schematically shown in
Fig. 1.

As can be seen in Fig. 1, the controller allows two different
control algorithms to be executed, depending on the user’s selec-
tion, i.e., ON/OFF control or fuzzy-logic control. The first algorithm
consists of multiple ON/OFF controllers for illuminance, tempera-
ture, lights and CO2 concentration, which are supported by several
time and other restrictions. The fuzzy-logic algorithm consists of
two separate fuzzy controllers for illuminance and temperature,
and two ON/OFF controllers for the lights and for the ventilation
connected to the CO2 concentrations. Regardless of the control-
algorithm selection, the controller is connected to the mathemat-
ical model of the temperature and illuminance processes in a feed-
back loop, which represents the second part of the simulator.

The model used in the simulator consists of two sub-models,
which represent the necessary dynamic mechanisms describing
the relations between the room temperature and the illuminance
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levels, on the one hand, and the influential quantities, such as solar
radiation, illuminance, outdoor temperature, blinds position, win-
dows position, lights status, heating/cooling, etc., on the other. The
first sub-model represents the thermal model of the building and
considers all the relevant mechanisms of heat transfer to determine
the indoor building temperature with regard to the constructional
properties of the building and the influential quantities. The model
used in this study was developed in our laboratory by Sodja and
Zupan�ci�c [20] and was at that point validated using real-
environment measurements in a smaller test chamber. The devel-
oped model was implemented in the Dymola/Modelica object-
oriented environment. For the purpose of the simulator pre-
sented in this study, the existing model has been extended with
some additional mechanisms and re-parameterized according to
available measurements that correspond to the modelled room.
The main differences between the model developed by Sodja and
Zupan�ci�c and the model proposed in this work are as follows: the
purpose of the old model was mainly to develop the Dymola/
Modelica libraries, with its validation being of secondary impor-
tance; the old model incorporated the mechanisms describing
roller blinds in order to obtain the amount of solar radiation that
passes through the window, while the newmodel incorporates the
mechanisms describing venetian blinds; the new model also in-
corporates mechanisms for the heating/cooling of the room using
the heating/cooling panels and ventilation.

The second sub-model (realized in the Matlab and Simulink
environments) represents the indoor illuminance model and con-
siders the impact of the solar illuminance (external illuminance
level), the position of the blinds and the status of the artificial
lighting on the current illuminance levels in the room. The pro-
posed illuminance model was developed especially for the purpose
of the indoor-environment simulator and has not been used in any
of the previous studies. The model was developed as a black-box
Fig. 2. User i
model, using a fuzzy-inference system that was trained using
real-time measurements as the inputs and outputs of the model.
The black-box model uses the outdoor illuminance, the position of
the blinds and the status of the artificial lighting as its inputs and,
according to the set of parameterized fuzzy rules, computes the
indoor illuminance level as its output.

The third part of the simulator, i.e., the user interface (Fig. 2,
realized in the Matlab and Simulink environments), represents the
connecting link between the processes running in the simulator
background and the user performing simulation runs with different
parameters and observing the corresponding results. The user
interface is also an important part of the simulator; however, it
does not represent the core of the simulator. For this reason, a large
portion of this paper is dedicated to the presentation of the models
and the controllers, as they represent the two basic parts of the
simulator.

The presented simulator was developed, parameterized and
validated using the Matlab, Simulink and Dymola environments,
employing real-time measurements of the test room.

2.1.1. ON/OFF control
The illuminance levels in the room can be changed either by the

position of the blinds, the inclination of the blade or by the artificial
lighting (the indoor illuminance can only be changed by one control
variable at a time). The priority is always on the “passive” control
variable, meaning that natural light is always the preferred solution
for the indoor illuminance control. As described by Ko�sir et al. [17],
the correct position of the blinds in our simulator is determined by
the ON/OFF inclination controller, whose I/O characteristic is shown
in Fig. 3a.

As can be seen in Fig. 3a, the input to the controller is the error
eL ¼ STIL � MIL, where STIL represents the indoor illuminance set-
point and MIL represents the measured indoor illuminance,
nterface.
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obtained from the illuminance model. The hystereses DD and DU

define the dead-zone between�DD and DU, where the output of the
controller does not change. If the error eL reaches the value�DD, the
controller detects a low illuminance in the room and checks to see
whether the blades are completely open and retracts the blinds. If
the error eL reaches the value DU, the controller detects excessive
illuminance and extends the blinds.

In the case that the blinds are extended, i.e., when the error eL is
larger than �DD, the indoor illuminance is controlled by changing
the inclination of the blade. The blades can take four different an-
gles, i.e., 0� (vertical positione completely closed), 30�, 60� and 90�

(horizontal position e completely open). Fig. 4 shows a part of the
flowchart from the paper of Ko�sir et al. [17], which describes the
blade-inclination control.

Labels dU and dD represent the hystereses that determine at
which error value eL the blade inclination will be changed. Fig. 5
shows the control diagram that explains how the blade-
inclination controller R corrects the previous value of the slope
and reduces the error value eL.

Observing Fig. 5, label w represents the indoor illuminance set-
point, eL represents the indoor illuminance error, R denotes the
blade-inclination controller, u represents the controller output, u1
represents the input to the process, P denotes the process (illumi-
nance model) and y represents the output of the process. Block z�1

returns the previous value of the blade inclination. Thus, the cur-
rent slope of the blades is defined as the prior slope changed for the
value returned by the controller R.

Controller R, which is part of the control diagram shown in
Fig. 5, is described by the I/O characteristic shown in Fig. 3b.

Fig. 3b shows that in the case of the error value eL ¼ �dD the
controller outputs a value of 1; and�1 in the case of the error value
eL¼ dU. Each time the controller outputs a value of 1, the blade slope
is increased by one degree (if it is not equal to 90�). If the controller
returns a value of �1, the blade slope is decreased by one degree (if
it is not equal to 0�). ∊ represents an infinitesimal value as the
output of the controller immediately drops to zero when the ab-
solute error is reduced.

The indoor illuminance is also controlled by means of artificial
lighting. The lights are controlled by the ON/OFF controller, whose
I/O characteristic is shown in Fig. 3c.

Fig. 3c shows that the lights are turned on in the case of an error
value eL being smaller than �DLD, and are turned off in the case of
an error value eL being larger than DLU. The dead-zone defined by
the hysteresis DLD in DLU denotes the area where the status of the
lights does not change. The algorithm, which together with the
lights controller determines the status of the lights, also includes
restrictions due to energy efficiency. The lights can only be turned
on when the blinds are completely retracted and the external
illuminance is below the lowest limit, denoted by STEIL (this re-
striction is valid if it is assumed that illuminance has priority over
temperature e described below). Due to energy conservation, it is
better to completely retract the blinds first and afterwards turn the
lights on. The rules of the controller are set in such a way as to
follow the principles of bioclimatic design. One such principle is
that the building should use the available natural resources (i.e.,
natural daylight) to the maximum, and if the desired indoor con-
ditions are not met with these, then the controller activates addi-
tional active measures (i.e., artificial illumination).



Fig. 5. Feedback control of the blade inclination.

Fig. 6. Fuzzy illuminance control.
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The purpose of all the described hystereses is to ensure that the
inclination of the blade, the position of the blinds and the status of
the lights are not changed each time the illuminance level changes.
However, in the case of the presented model, the limitations rep-
resented by the hystereses do not suffice, due to large deviations
from the set-point values, which often occur in illuminance levels.
Therefore, it is important that the illuminance control algorithm
also utilizes additional time limitations, which determine the time
intervals during which the position of the blinds, the inclination of
the blade and the status of lights can be changed. When dealing
with the control of external blinds in practice, another limitation,
i.e., a strong wind, has to be taken into consideration. For this
reason, the simulator also includes a mechanism to prevent the
retraction of the blinds, which prevents the blinds from being
damaged due to a strong wind.

The temperature in the studied room can be affected in multiple
ways, i.e., switching on the heating/cooling panels, using solar ra-
diation as a heating source or opening the window for passive
cooling. The temperature-control algorithms allow two basic
modes of operation, i.e., the heating mode and the cooling mode,
where the temperature is controlled by an ON/OFF controller,
regardless of the selected operatingmode. Fig. 3d and e shows the I/
O characteristics of the controller in the heating and coolingmodes,
respectively.

The input to the controller is the error value eT¼ STT�MT, where
STT represents the indoor-temperature set-point andMT represents
the measured indoor temperature. The output of the controller can
be 0 or 1, where 1 denotes that the cooling or heating is turned on
and 0 denotes that the cooling or heating is turned off. In Fig. 3d and
e the hysteresis is represented by dt, which means that the width of
the dead-zone is 2dt. Fig. 3d shows that the heating is turned on in
the case of the error value eT ¼ �dt and is turned off in the case of
the error value eT ¼ dt. When the controller operates in the cooling
mode (Fig. 3e), the process of activation is reversed, meaning that
the cooling is turned on if the error value eT ¼ dt and is turned off if
the error value eT ¼ �dt.

When the controller is operating in the cooling mode, the pas-
sive cooling has priority over cooling with the cooling panels,
which means that when the outdoor temperature is lower than the
indoor reference temperature, the window opens. Due to mea-
surement noise associated with the outdoor temperature, the al-
gorithm incorporates a limitation that defines a minimum time for
which thewindowmust be opened or closed. In the case of rain or a
higher outdoor temperature compared to the set-point tempera-
ture, the window remains closed and the cooling panels are turned
on.

Since the intensity of the solar radiation significantly affects the
indoor temperature, the algorithm has the possibility to select a
priority quantity, i.e., the temperature or the illuminance [17]. If the
illuminance has priority over the temperature, the blinds controller
ensures that the illuminance levels are as equal as possible to the
defined set-point. If the temperature has priority over the
illuminance, the blinds position and the blade inclination are
controlled in such a way as to prevent overheating in the summer
and to make use of the solar radiation for passive heating in the
winter. Therefore, in the summertime, when sufficient solar radi-
ation and/or a sufficient external temperature are present, the
blades are completely closed. On the other hand, in the wintertime,
the blinds are retracted if the solar radiation exceeds the limit of
STSR and/or the outdoor temperature is higher than the set limita-
tion STto.

The simulator also enables control of the carbon dioxide con-
centration, which represents one of the air-quality indicators in the
room. The algorithm is based on the ON/OFF controller with hys-
teresis DCO2

, which returns a value of 1 in the case of the error value
eCO2

¼ �DCO2
, meaning that the window is opened; and a value of

0 in the case of the error value eCO2
¼ DCO2

, meaning that the
window is closed. The error value is defined as
eCO2

¼ STCO2
�MCO2

, where STCO2
represents the CO2 concentra-

tion set-point and MCO2
is the measured CO2 concentration. In the

case of rain, the window stays closed.

2.1.2. Fuzzy control
The complete ON/OFF control algorithms have some drawbacks

(e.g., ON/OFF controllers can only have two different output values
and they cannot follow the reference signals without errors. This
causes the oscillations around the reference signals, when applied
to the real test environments. Therefore, the control algorithm
described above was improved with fuzzy-logic. The fuzzy con-
trollers were chosen as they seem to be the best option, since the
concept of fuzzy control is very close to human decision-making, so
the inexperienced users can understand them. The controllers (ON/
OFF) for the blinds position and the blade inclinationwere replaced



Table 1
Fuzzy control rules.

if eL is XLN then output is �3
if eL is LN then output is �3
if eL is MN then output is �2
if eL is SN then output is �1
if eL is ZE then output is 0
if eL is SP then output is 1
if eL is MP then output is 2
if eL is LP then output is 3
if eL is XLP then output is 3
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by the fuzzy-logic P controller, whose I/O characteristic is shown in
Fig. 6. The controller was developed using the built-in Matlab FIS
editor [23] and incorporates a fuzzy-inference system in a Takagi-
Sugeno (TS) [24] form, which returns crisp values to its output.

The input to the illuminance fuzzy controller is the error value
eL, which varies in the range between �1000 and 1000, while the
output from the controller can take values between �3 and 3.
Fig. 7 shows the shape and the distribution of the membership
functions of the input variable eL, which are used by the illumi-
nance fuzzy controller for the appropriate blinds position and
blade inclination.

The output of the controller defines the change of the blinds or
blade position, where a new position is defined when the current
position changes to the value returned by the controller. Since in
this case only one controller for the blinds position and the blade
inclination is used, the position and the inclination were merged
and labelled with values between 0 and 4. Values 0, 1, 2 and 3
represent the blade inclination from 0� (vertical position) to 90�

(horizontal position) and at the same time indicate that the blinds
are extended. Value 4 means that the blinds are completely
retracted, which allows an unobstructed light flow into the room.
The actual output from the illuminance fuzzy controller is deter-
mined depending on which fuzzy set the error eL belongs to and is
shown in Table 1. The labels of the fuzzy sets have the following
meaning: XLN e extra-large negative, LN e large negative, MN e

medium negative, SN e small negative, ZE e zero, SP e small
positive, MP e medium positive, LP e large positive and XLP e

extra-large positive.
Since some processes, such as lights operation and room

ventilation, do not need a more complex fuzzy control, simple ON/
OFF controllers, as described previously, were retained in the
extended control scheme. This means that the lights and room
ventilation are still controlled by the ON/OFF controllers, whose I/O
characteristics have already been shown. In order to avoid the
movement of the blinds and switching on/off of the lights too often,
time limitations were added in a similar manner as with the ON/
OFF control.

Similar to the fuzzy illumination controller, a fuzzy temperature
controller was also developed using Matlab’s FIS editor. In the case
of temperature control, a fuzzy PD controller was used, with two
inputs, i.e., the error value eT ¼ STT � MT and the indoor-
temperature derivative dT. Similarly, the fuzzy-inference system is
of the TS form with triangular membership functions. When
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Fig. 7. Fuzzy set of input variable eL for the illuminance control.
determining the if-then fuzzy rules, the logical operator AND (MIN)
was used between the two fuzzy sets of linguistic variables and the
weighted average was used for the de-fuzzification technique. The
I/O characteristic of the default fuzzy temperature controller is
shown in Fig. 8.

As can be seen in Fig. 8, the calculated error can take values
between �7 and 7, the temperature derivative can take values
between �2 and 2, while the output from the controller can take
values between �1 and 1; 1 meaning that the heating is on, �1
meaning that the cooling is on, and 0meaning that both the heating
and cooling are turned off. When the controller returns a value
of�1, the algorithm checkswhether it is possible tomake use of the
passive cooling, by opening the window. Meaning, if the outdoor
temperature is lower than the desired indoor temperature, the
window will be opened. If this is not the case or if it rains, the
cooling panels are turned on. When the control algorithm de-
termines that heating is required, the heating panels are switched
on.

Similar to the ON/OFF control, the fuzzy controller also allows
the selection of the priority quantity (illuminance or temperature).

2.1.3. Thermal and CO2 models
The thermal and the CO2 models used in the simulator are

developed in the Dymola/Modelica object-oriented environment.
This allows the use of objects such as walls, windows, heating/
cooling panels, heat flows, etc., each described by its own dynamic
characteristics. The objects have to be put together in order to
obtain a model of the room with an arbitrary complexity. Such a
model of a room, if treated as an object, can be used for simulating
the thermal and CO2 concentration processes of any desired room
or building. However, the model, to achieve its purpose, has to be
properly parameterized and validated using relevant measure-
ments of a real room environment. The real-time measurements
Fig. 8. Fuzzy temperature control.



Fig. 9. Floorplan of the modelled room. The outdoor wall is on the bottom side of the figure, with the marked window area.
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used in this study are obtained for a room that is located on the 4th
out of a 5-floor building, with one outdoor wall having a window,
facing south-west (rotated by approximately 30� counter-clockwise
from the east-west direction). The dimensions of the room are
7.48m� 4.95m� 3.88m (l�w� h), where the outdoor wall is the
longest. The area of the window is 11.4 m2. Fig. 9 shows the floor-
plan of the particular room.

The characteristics of the room used in the model are as follows.
The thickness of the outdoor wall is 260 mm, with a U value of
1.29 W/m2 K; the thickness of the indoor walls is 220 mm, with a U
value of 1.17 W/m2 K; the thickness of the floor and ceiling is
520 mm, with a U value of 0.83 W/m2 K; and the U value of the
window is 2.9 W/m2 K.

The goal of the presented model is to accurately represent the
indoor temperature based on the initial conditions and the influ-
ential quantities. The parameterization of the model was carried
out using real-time measurements (15-s sample time) of the
following: solar radiation (global and diffuse), outdoor tempera-
ture, indoor temperature, blinds position, window position and
heating or cooling status. Fig.10 shows the validation of the thermal
model by comparing the measured and model simulated indoor
temperatures for 10 consecutive days.

As can be seen in Fig. 10, the indoor temperature obtained using
the model simulation accurately follows the measured indoor
temperature for all 10 days. Therefore, the validation of themodel is
considered as successful and themodel can be used as a satisfactory
approximation of the real conditions in the building for further
simulations using different control algorithms.
Finding the CO2 concentration in the simulator can involve two
different mechanisms. The first mechanism is to use the actual CO2
levels from the measured data, while the second mechanism in-
volves a simple nonlinear differential equation, which determines
the amount of CO2 according to the room volume, the window
position and the number of persons inside the room:

dCin
dt

¼ 1
Vroom

�
fairflowðCout � CinÞ þ fpersonnperson$1000

�
; (1)

where Vroom represents the volume of the room (set to 160 m3), Cin
represents the CO2 concentration in the room in ppm, fairflow rep-
resents the amount of airflow that passes through the window (set
to 0.025 m3/s), Cout represents the outdoor CO2 concentration (set
to 500 ppm), fperson represents the CO2 generation rate of one
person (set to 0.005 m3/s) and the nperson represents the number of
people in the room.

Fig. 11 shows the differences in CO2 concentration and indoor
temperature between an occupied and an empty room.

As can be seen in Fig. 11, the first-panel figure shows a com-
parison of the temperature of the empty room (black solid line) and
the temperature of the occupied room (grey dashed line). The
second-panel figure shows the comparison of the empty room
(black solid line) and the occupied room (grey dashed line) CO2
concentration using an ON/OFF control. For the occupied room, the
simulation assumes there are three people present in the room
(100 W each), each using a laptop computer (50 W each) during
office hours (8.30e16.30), denoted in the third-panel figure. From



Fig. 10. Thermal model validation; comparison between the measured and model
simulated indoor temperatures for 10 consecutive days.

Fig. 11. First panel: comparison of the empty room (black solid line) and the occupied
room (grey dashed line) temperature; second panel: comparison of the empty room
(black solid line) and the occupied room (grey dashed line) CO2 concentration; third
panel: room occupancy (0 e empty, 1 e occupied); fourth panel: window position (0 e

closed, 1 e opened).
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the indoor temperature comparison it is clear that occupancy of the
room quickly starts to increase the temperature of the room, which
rises until approximately 12.00, when due to the high CO2 con-
centration (1050 ppm) awindow is opened, visible from the fourth-
panel figure. When the CO2 concentration drops below 950 ppm
the window is shut and the temperature starts to rise. A similar
pattern repeats two more times until the office hours are over.

2.1.4. Illuminance model
The illuminance model used in the simulator is developed and

parameterized as a black-box model, based on the TS fuzzy-
inference system. The model, in TS form, approximates a
nonlinear system by smoothly interpolating affine local models
[24]. Each local model contributes to the global model in a fuzzy
subset of the space characterized by a membership function. The
affine TS model can be used to approximate any arbitrary function
with any desired degree of accuracy [25e27]. The generality can be
proven with the Stone-Weierstrass theorem [28], which suggests
that any continuous function can be approximated by a fuzzy basis-
function expansion [29].

Nowadays, there are many software applications that are able to
compute illuminance levels at an arbitrary position in a room, given
its geometry, global orientation, sun position and surface charac-
teristics [30,31]. However, most of these programs use complex and
computationally demanding algorithms that calculate the illumi-
nance of a given surface based on the input light flow, intensity and
angle, surface reflections, interior, etc. For this reason and due to
the available real-time measurements of the room illuminance, a



Fig. 13. Illumination model validation; upper-panel figure shows the comparison of
the measured (black line) and model simulated (grey line) indoor illuminance for 10
consecutive days; the lower-panel figure shows the corresponding position of the
blinds.
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black-box fuzzy model, describing the in-to-out relations was
developed. Since the light dynamics can be (from the room-
illuminance point of view) considered as infinitely fast or instan-
taneous (in contrast to the temperature dynamics) the black-box
model is regarded as a static model from the modelling perspec-
tive. This means that the change of the outdoor illuminance, blinds
position or lights status has an immediate effect on the change of
the observed surface illuminance, with no transitional dynamics.
Fig. 12 shows the schematic representation of the model.

The parameterization of the fuzzy model, also known as
training, involved 1 year of consecutive measurements, which
include many possible real-world situations, such as sunny, cloudy,
foggy weather, different sun azimuths and elevations, rapid illu-
minance changes due to partial cloudiness or incoming thunder-
storms, lights operation, etc. The measurements that were used for
the model training were the following: outdoor illuminance, blinds
position, lights status (model inputs) and indoor room illuminance
(model output). The model was built in a TS form, with five data
clusters and Gaussian membership functions. The Fuzzy C-Means
(FCM) clustering algorithm was used for model training. Fig. 13
shows the validation of the model by comparing the measured
and model-simulated indoor illuminance for 10 consecutive days.

As can be seen in Fig. 13, the illuminance levels obtained by the
model follow the measured illuminance levels satisfactorily, which
indicates that the validation of the model can be considered as
successful and the model can be used as a satisfactory approxi-
mation of the real conditions in the building for further simulations
using different control algorithms.

The fuzzy black-box model has several advantages over con-
ventional illuminance models. One of these advantages is that it
does not use complex algorithms to obtain the illuminance in-
tensity of a particular surface, but incorporates a simple set of fuzzy
rules, which, by using several membership functions, outdoor
illuminance levels and blinds positions, define a certain surface
illuminance instead. Another advantage of the black-box model is
that the fuzzy training algorithm is capable of determining the
amount of light that passes through the blinds, where the position
of the blinds can simply be provided as an integer number, i.e., 0 to
3 - blinds completely extracted, with the following angle: 0 e

0� angle (vertical), 1 e 30� angle, 2 e 60� angle, 3 e 90� angle
(horizontal) or 4 e blinds completely retracted. According to the
illuminance measurements and the position of the blinds (0e4) the
fuzzy model is able to define the nonlinear relations between the
blinds position, the outdoor illuminance and the corresponding
decrease in the indoor illuminance, which would, in the case of a
conventional illuminancemodel, have to be provided in some other
way. Also, since the fuzzy model utilizes the in-to-out mapping of
the measured data, the determination of the illuminance level
should be more accurate than with conventional algorithms.

Although the black-box modelling approach has several ad-
vantages over conventional models, it also has some general
Fig. 12. Schematic representation of the
drawbacks, where fuzzy is no exception. One of the disadvantages
is that a substantial amount of data (measurements) in as many real
situations as possible is needed in order to obtain a robust and
versatile model. However, if the measurements are available, the
black-box model represents one of the better options for deter-
mining the indoor illuminance, due to its simple structure and its
parameterization. The other disadvantage is that the illuminance
level in a building can only be obtained for the surface for which the
measurements were obtained, in comparison to conventional
models, which are usually able to determine the illuminance of an
arbitrary surface in the building. Nonetheless, since inner-comfort
studies mostly focus on particular workplace conditions in the
building and not on complete rooms, illuminance information just
from such a place seems sufficient. When the illuminance levels of
different positions in a room are required, measurements can be
fuzzy black-box illuminance model.



Fig. 14. Blade inclination (ON/OFF control).
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obtained withmultiple illuminance sensors, which are then used to
train the multiple-output fuzzy model.
3. Using the simulator

In order to make the simulator user friendly, the user interface
was designed in a manner that enables easy changing of the pa-
rameters and shows the results immediately. The interface pa-
rameters are logically divided into blocks belonging to references,
hystereses, delays and restrictions. At the start of the simulation, all
the parameters that are part of the controller or themodel are set to
the default values. However, before the start of the simulation, the
parameters can be optionally configured. Also, real-time mea-
surements of the relevant data, such as the outdoor temperature,
the outdoor illuminance, the solar radiation, the wind speed, etc.,
are loaded for each simulation run, since the simulator is designed
to use real-time measurements rather than artificially generated
ones. The data can be loaded for up to 10 days. Depending onwhich
time of the year the loaded data belong to, the heating or cooling
mode can be selected. Moreover, a higher priority can be chosen for
either the illuminance or the temperature.

As described previously, the simulator utilizes two control
modes, i.e., the ON/OFF and the fuzzy control. The selection of the
Fig. 15. Indoor and outdoor illuminance (ON/OFF control).
control mode is up to the user. When fuzzy control is selected,
different pre-configured controllers for the illuminance and the
temperature can be engaged. Moreover, using the built-in FIS edi-
tor, new controllers can be designed by either modifying the
existing controllers or building them completely from scratch. All
the generated controllers are saved and can be used for later
simulation runs.

When the simulation is finished, user-selected figures are dis-
played from the set of pre-defined figures, such as: blade inclina-
tion, blinds position, heating/cooling, window position, indoor and
outdoor illuminance, indoor and outdoor temperature and lights
status.

4. Results

The following section presents the simulation results obtained
with two different control modes, i.e., ON/OFF and fuzzy; the
former for a winter and the latter for a summer day.

Since in practice it is undesirable for the blinds and the blade
position to change too often, both control modes use a 30-
min inactivity interval between two successive ascents/descents
of the blinds and a 15-min inactivity interval between two suc-
cessive inclination changes, meaning that the blinds can be
retracted or extended only every 30 min and the blade inclination
can be changed only every 15 min. The lights controller uses a 100
lx hystereses DLU and DLD, while the inactivity interval is equal to
10 min. In both control modes, higher priority is assigned to the
illuminance.

4.1. ON/OFF control

Fig. 14 shows the simulated blade inclination using the ON/OFF
controller with 50 lx hysteresis. Values from 0 to 3 denote the blade
position (0 e completely closed, 3 e fully opened).

As can be seen in Fig. 14, the blades close several times between
noon and 3 pm, as the external illuminance is the highest at that
time of the day. The blinds position (extended/retracted) is changed
only twice, i.e., in the morning at 8.30 am, when the blinds extend,
and in the evening at 5 pm, when they retract (not shown in the
figure). The hysteresis of the controller of the blind position is equal
to 100 lx.

Fig. 15 shows the indoor illuminance obtained from the model
and the external illuminance obtained from the loaded data. The
indoor illuminance set-point is 500 lx, chosen according to the
recommended values stated in the ISO/CIE 8995-1 standard [32].

As shown in Fig. 15, the controller is able to roughly follow the
desired reference value. However, due to the inactivity interval, the
illuminance deviates from the reference value by more than 50 lx,
as much as the controller hysteresis should allow, several times,
which is a consequence of a rapid external illuminance change.

At the time of the working regime (between 7 am and 4 pm),
especially in the morning, artificial illumination is needed, as the
indoor illuminance, despite the fully-open blinds, does not reach
the desired set-point. In our case, the lights are switched on from
7 am to 8.30 am, which can be seen in Fig. 15 as a rapid increase in
the illuminance.

Since the ON/OFF control is simulated using the data for awinter
day, the heating mode is selected within the user interface. The
hysteresis of the temperature controller is equal to 0.5 �C.

Fig. 16 shows the indoor temperature (Tin) obtained from the
model, the outdoor temperature (Tout) obtained from the loaded
data and the indoor temperature set-point (STT) obtained from the
user interface. The latter is equal to 25 �C at the time of the working
regime (between 7 am and 4 pm) and 24 �C during the reduced
regime. The set-point values for the indoor-air temperature were



Fig. 17. Blade inclination (Fuzzy control).
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set according to the recommendations of the CR 1752 [33] docu-
ment of the European Committee for Standardization. Also, the
heating and window operation (0 e OFF, 1 e ON) are shown on the
lower panel of the figure.

As shown in Fig. 16, the heating is turned on at the change of the
set-point (7 am), and remains active until about noon, when the
indoor temperature reaches 25.5 �C. The figure also shows that the
indoor temperature starts to decrease at noon, which is the
consequence of the open window. The ON/OFF controller, which
controls the room’s air quality, detects high carbon dioxide con-
centrations (>1050 ppm) and thus changes the window status to
open. After one hour the window is closed and then the indoor
temperature starts to rise.

4.2. Fuzzy control

The second example shows the simulation results obtained
when using the fuzzy controller.

Fig. 17 shows the simulated blade inclination using the fuzzy
controller. Values from 0 to 3 denote the blade position (0 e

completely closed, 3 e fully opened).
As already mentioned, the blade inclination changes only if the

blinds are extended, which in this case is at 8 am, when the outdoor
illuminance is high enough, and then they retract at 8 pm,when the
external illuminance decreases. The blade inclination increases and
Fig. 16. ON/OFF temperature control; the upper panel figure shows indoor and out-
door temperature, the middle panel figure shows when the heating is turned on, and
the lower panel figure shows the position of the window.
decreases depending on the size of the error eL. All the changes of
the blades inclination, except one, are one-step inclination changes.
The interval of inactivity between two successivemovements of the
blinds is the same as in the first simulation.

Fig. 18 shows the indoor illuminance obtained from the simu-
lation and the measured outdoor illuminance. Therefore, the lights
are turned on only between 7 am and 8 am.

As shown in Fig. 18, the indoor illuminance is close to the set-
point in the working regime (between 7 am and 4 pm), which is
provided by two controllers, i.e., the illuminance fuzzy controller
and the ON/OFF lights controller. The hysteresis and the inactivity
interval of the ON/OFF controller are the same as in the first
simulation results.

Since the fuzzy control is simulated using the data for a summer
day, the cooling mode is selected within the user interface. The
hysteresis of the temperature controller is equal to 0.5 �C.

Fig. 19 shows the simulated indoor temperature, the measured
outdoor temperatures and the user-defined indoor-temperature
set-point.

As is clear from Fig. 19, the actual and the set-point temper-
atures between midnight and 7 am are close enough (small error
eT) so that cooling is not necessary. At 7 am, when the working
regime is activated, the error eT increases because the
Fig. 18. Indoor and outdoor illuminance (Fuzzy control).



Fig. 19. Fuzzy temperature control; the upper panel figure shows indoor and outdoor
temperature, the middle panel figure shows when the cooling is turned on, and the
lower panel figure shows the position of the window.
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temperature set-point is lower than in the reduced regime,
meaning that the cooling must be engaged. When the outdoor
temperature is lower than the desired indoor temperature, pas-
sive cooling is activated by opening the window. As the outdoor
temperature reaches the desired indoor temperature, i.e., at
about noon, the window is closed and the cooling panels are
turned on. They stay activated until 6 pm, when the outdoor
temperature decreases and passive cooling can be switched on
again. As can be seen in Fig. 19, the indoor temperature continues
to increase even though the cooling panels are turned on. The
reason for this is that the panels are too small compared to the
room volume, meaning that the full cooling power of the panels
cannot counteract the higher outside temperatures.
5. Conclusion

This paper presents the development of a simulator and the
underlying mathematical models of the experimental indoor
environment. The models for the temperature and illuminance
processes were built using the Dymola/Modelica object-oriented
environment (temperature) and a fuzzy black-box (illuminance)
approach. Both models were validated using the real-weather
environment measurements of the ICsIE and proved to be
accurate enough for further simulation studies in the framework of
the presented simulator. The simulator, together with the user
interface, enables users to perform a variety of different simulation
experiments, from control-system design through energy conser-
vation to studies of indoor comfort. As mentioned, the simulator
has several advantages over real-system experimentation, such as
fast and process-safe testing, unlimited repeatability and almost
arbitrary weather conditions, to mention just a few of them. All the
presented tools enable studies on the energy efficiency of buildings,
building automation, better working and living conditions for the
occupants, etc., to be initially performed on the PC simulation level
and, after achieving satisfactory outcomes, applied to real living
environments.
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